การ์ทเนอร์คาดการณ์ว่าในอีกสามปี (พ.ศ. 2570) 40% ของโซลูชัน generative AI จะทำงานในแบบมัลติโหมดที่จะสามารถประมวลผล ทำความเข้าใจและทำงานร่วมกับข้อมูลได้มากกว่าหนึ่งประเภท (อาทิ ข้อความ,รูปภาพ, เสียง และวิดีโอ) ซึ่งเพิ่มขึ้นจาก 1% ในปี 2566 โดยการเปลี่ยนแปลงนี้ทำให้ Human-AI มีปฏิสัมพันธ์ที่พัฒนายิ่งขึ้น และยังมอบโอกาสที่จะสร้างความต่างให้กับสิ่งที่ GenAI มีให้
เอริค เบรทเดอนิวซ์ รองประธานฝ่ายวิจัยการ์ทเนอร์ กล่าวว่า “เนื่องจากตลาด GenAI วิวัฒน์ไปสู่โมเดลที่เกิดและพัฒนาด้วยโหมดต่าง ๆ มากกว่าหนึ่งโหมด สิ่งนี้ช่วยสะท้อนภาพความสัมพันธ์ระหว่างข้อมูลที่ส่งออกมาในปริมาณมากและเพิ่มขึ้นต่อเนื่องที่แตกต่างกัน และมีศักยภาพในการปรับขนาดการใช้และเพิ่มประโยชน์ของ GenAI ให้ครอบคลุมประเภทข้อมูลและแอปพลิเคชันทั้งหมด นอกจากนี้ยังช่วยให้ AI สนับสนุนการทำงานของมนุษย์ได้มากขึ้นโดยไม่คำนึงถึงสภาพแวดล้อม”
Multimodal GenAI เป็นหนึ่งในสองเทคโนโลยีที่ได้รับการระบุไว้ในรายงาน Gartner Hype Cycle for Generative AI ปีนี้ โดยการนำมาใช้ช่วงแรกอาจสร้างความได้เปรียบในการแข่งขันที่สำคัญและเพิ่มประสิทธิภาพในด้านระยะเวลาในการนำออกสู่ตลาด ควบคู่ไปกับโมเดลภาษาโอเพนซอร์สขนาดใหญ่ (LLM) ทำให้เทคโนโลยีทั้งสองมีศักยภาพที่จะสร้างผลกระทบสูงต่อองค์กรอย่างสูงภายในห้าปีข้างหน้านี้
บรรดานวัตกรรม GenAI ที่การ์ทเนอร์คาดว่าจะได้รับการยอมรับแพร่หลายภายใน 10 ปีนั้น มีเทคโนโลยี 2 ประเภทที่ได้รับการระบุว่ามีศักยภาพสูงสุด ได้แก่ Domain-Specific GenAI Models และ Autonomous Agents (ดูรูปที่ 1)
รูปที่ 1: วงจรเทคโนโลยีสำหรับ Generative AI ปี 2567
ที่มา:การ์ทเนอร์ (กันยายน 2567)
อรุณ จันทรเศกการัน รองประธานฝ่ายวิจัยของการ์ทเนอร์ กล่าวว่า “การวิเคราะห์แนวโน้มระบบนิเวศของ GenAI ยังคงเป็นเรื่องยากสำหรับองค์กร เนื่องจากระบบนิเวศของเทคโนโลยีนี้และผู้ผลิตหรือผู้ให้บริการเทคโนโลยีนั้นมีการเปลี่ยนแปลงอย่างรวดเร็ว โดย GenAI กำลังอยู่ในช่วงขาลงเมื่ออุตสาหกรรมเริ่มรวมตัวเข้าด้วยกัน ทว่าประโยชน์ที่แท้จริงจะเกิดขึ้นเมื่อกระแสนี้ลดลง และตามมาด้วยขีดความสามารถที่ก้าวหน้าขึ้นจะเกิดขึ้นรวดเร็วไปอีกมากในอีกไม่กี่ปีข้างหน้านี้”
Multimodal GenAI
Multimodal GenAI จะมีผลกระทบต่อแอปพลิเคชันองค์กรอย่างมาก จากการเพิ่มคุณสมบัติและฟังก์ชันใหม่ ๆ ที่วิธีอื่น ๆ ทำไม่ได้ และผลกระทบนั้นไม่ได้จำกัดอยู่แค่เฉพาะอุตสาหกรรมหรือยูสเคสการใช้งานเฉพาะเท่านั้น แต่ยังสามารถนำไปประยุกต์ใช้ในทุก Touchpoint ระหว่าง AI กับมนุษย์ ปัจจุบัน Multimodal Model หลาย ๆ ตัวยังมีข้อจำกัดอยู่เพียงสองหรือสามโหมดเท่านั้น แต่อีกไม่กี่ปีข้างหน้าจะเพิ่มขึ้นเพื่อให้ครอบคลุมมากขึ้น
“ในโลกความเป็นจริง ผู้คนจะพบเจอและเข้าใจข้อมูลผ่านการประมวลผลที่เป็นการผสมผสานของข้อมูลหลากหลายประเภท อาทิ เสียง ภาพและการสัมผัส โดย Multimodal GenAI นั้นมีความสำคัญอย่างยิ่ง เนื่องจากข้อมูลโดยทั่วไปนั้นจะประกอบด้วยประเภทต่าง ๆ อยู่แล้ว เมื่อนำ Single Modality Models มาประกอบเข้าด้วยกันเพื่อรองรับแอปพลิเคชัน Multimodal GenAI มักส่งผลให้เกิดความล่าช้าและลดความแม่นยำของผลลัพธ์ ส่งผลให้ได้รับประสบการณ์ที่มีคุณภาพต่ำ” เบรทเดอนิวซ์ กล่าวเพิ่ม
Open-Source LLMs
LLM แบบโอเพ่นซอร์สเป็นโมเดลพื้นฐานการเรียนรู้เชิงลึกที่เร่งมูลค่าองค์กรจากการนำ GenAI ไปปรับใช้งาน โดยทำให้การเข้าถึงเชิงพาณิชย์ได้อย่างเสรีและอนุญาตให้ผู้พัฒนาปรับแต่งโมเดลให้เหมาะกับงานและยูสเคสการใช้งานเฉพาะ นอกจากนี้ ยังสามารถเข้าถึงชุมชนนักพัฒนาในองค์กร สถาบันการศึกษา และบทบาทการวิจัยอื่น ๆ ที่กำลังทำงานเพื่อเป้าหมายร่วมกันปรับปรุงและทำให้โมเดลนี้มีคุณค่ามากขึ้น
“LLM แบบโอเพ่นซอร์สเพิ่มศักยภาพด้านนวัตกรรมผ่านการปรับแต่งอย่างเหมาะสม ทำให้การควบคุมความเป็นส่วนตัวและความปลอดภัยดีขึ้น โมเดลมีความโปร่งใส มีความสามารถเพิ่มจากการพัฒนาร่วมกัน และมีศักยภาพในการลดการผูกขาดของผู้ขาย ท้ายที่สุดแล้ว LLM นำเสนอโมเดลขนาดเล็กกว่าให้กับองค์กร ซึ่งฝึกฝนได้ง่ายและมีค่าใช้จ่ายน้อยกว่า และเปิดใช้งานแอปพลิเคชันทางธุรกิจและกระบวนการทางธุรกิจหลัก” จันทราเสการัน กล่าวเพิ่ม
Domain-Specific GenAI Models
Domain-Specific GenAI Models ได้รับการพัฒนาเพื่อตอบสนองต่อความต้องการของอุตสาหกรรม ฟังก์ชันทางธุรกิจ หรือภารกิจที่มีความเฉพาะ โดยโมเดลเหล่านี้สามารถเพิ่มประสิทธิภาพของการจัดวางยูสเคสการใช้งานภายในองค์กรได้ พร้อมมอบความแม่นยำ ความปลอดภัย และความเป็นส่วนตัวที่ดีกว่า รวมถึงคำตอบที่เข้าใจบริบท ซึ่งช่วยลดความจำเป็นในการออกแบบข้อความที่ใช้สื่อสารกับโมเดล AI เทียบกับโมเดล AI ที่พัฒนามาเพื่อวัตถุประสงค์ทั่วไป และยังสามารถลดความเสี่ยงจากกรณีที่ AI อาจสร้างภาพหลอนขึ้นมาเอง (Hallucination Risks) จากการฝึกฝนที่เน้นการกำหนดเป้าหมาย
“Domain-specific models สามารถร่นระยะเวลาส่งมอบบริการตามความต้องการ (Time to Value) ประสิทธิภาพเพิ่มขึ้นและมีความปลอดภัยสูงขึ้นสำหรับโครงการ AI ต่าง ๆ โดยการนำเสนอจุด Start ที่ก้าวล้ำกว่าสำหรับงานอุตสาหกรรมเฉพาะ สิ่งนี้จะส่งเสริมการนำGenAI มาใช้อย่างแพร่หลายมากขึ้น เนื่องจากองค์กรต่าง ๆ จะสามารถนำไปประยุกต์ใช้ในยูสเคสที่ General-Purpose Models ไม่มีประสิทธิภาพเพียงพอ” จันทราเสการัน กล่าวเพิ่ม
Autonomous Agents
Autonomous Agents คือ ระบบรวม (Combined Systems) ที่สามารถบรรลุเป้าหมายที่กำหนดไว้ได้โดยปราศจากมนุษย์ โดยใช้เทคนิค AI ที่หลากหลายในการระบุรูปแบบของสภาพแวดล้อม การตัดสินใจ การจัดลำดับการดำเนินการและสร้างผลลัพธ์ โดยตัวแทนเหล่านี้มีศักยภาพเรียนรู้จากสภาพแวดล้อมและปรับปรุงตลอดเวลา ทำให้สามารถจัดการงานที่ซับซ้อนได้
“Autonomous Agents เป็นการเปลี่ยนแปลงครั้งสำคัญของความสามารถ AI โดยความสามารถดำเนินการและตัดสินใจได้อย่างอิสระช่วยปรับปรุงการดำเนินธุรกิจ สร้างประสบการณ์ที่ดีให้กับลูกค้า และใช้ในการเปิดตัวผลิตภัณฑ์และบริการใหม่ ๆ ส่งผลให้ประหยัดต้นทุนและมีความได้เปรียบทางการแข่งขัน นอกจากนี้ยังเปลี่ยนบทบาทของทีมงานในองค์กรจากการส่งมอบ (Delivery) เป็นการควบคุมดูแล (Supervision) แทน”
เกี่ยวกับการ์ทเนอร์
บริษัท การ์ทเนอร์ (Gartner, Inc.) (NYSE: IT) คือบริษัทวิจัยและให้คำปรึกษาชั้นนำของโลก มอบข้อมูลเชิงลึก คำแนะนำ และเครื่องมือต่าง ๆ แก่ผู้บริหารองค์กรธุรกิจ เพื่อรองรับการดำเนินภารกิจสำคัญที่มีอยู่ในปัจจุบันและสร้างองค์กรให้ประสบความสำเร็จในอนาคต ดูข้อมูลเพิ่มเติมเกี่ยวกับแนวทางของการ์ทเนอร์ในการช่วยให้ผู้บริหารตัดสินใจอย่างถูกต้องเพื่อขับเคลื่อนอนาคตของธุรกิจได้ที่gartner.com
อ่าน: 1,346
Comments
comments